
Online Metrics Prediction in Monitoring Systems

Matthieu Caneill∗, Noël De Palma∗, Ali Ait-Bachir†, Bastien Dine†, Rachid Mokhtari† and Yagmur Gizem Cinar∗
∗Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Email: {caneill, depalma, yagmur.cinar}@imag.fr
†Coservit

Email: {ali.ait-bachir, bastien.dine, rachid.mokhtari}@coservit.fr

Abstract—Monitoring thousands of machines and services in a
datacenter produces a lot of time series points, giving a general
idea of the health of a cluster. However, there is a lack of tools
to further exploit this data, for instance for prediction purposes.
We propose to apply linear regression algorithms to predict the
future behavior of monitored systems and anticipate downtimes,
giving system administrators the information they need ahead
of the problems arising. This problem is quite challenging when
dealing with a high number of monitoring metrics, given our
three main constraints: a low number of false positives (thus
blacklisting volatile metrics), a high availability (due to the nature
of monitoring systems), and a good scalability. We implemented
and evaluated such a system using production metrics from
Coservit, a company specialized in infrastructure monitoring.

The results we obtained are promising: sub-second latency per
predicted metric per CPU core, for the entire end-to-end process.
This latency is constant when scaling the system up to 125 cores
on 4 machines dedicated for monitoring predictions, and the
performances don’t decrease with time: during 15 minutes, it is
able to handle more than 100 000 monitoring metrics.

I. INTRODUCTION

Monitoring machines ensures a system is running correctly,
and triggers human intervention as soon as it is needed.
A lot of monitoring tools exist nowadays, ranging from in-
house scripts to complete software suites, distributed on many
servers. Monitoring software usually collect metrics (e.g. CPU
load, available memory), check them against defined thresh-
olds (e.g. 80% of the maximum), raise alerts to system admin-
istrators, and generate reports about resources consumption
and error rates.

There are different kinds of collected metrics: system-
related (CPU load, network speed, etc.), services-related
(database uptime, web server open connections, etc.), or sta-
tuses (up, down, unknown). These metrics are timestamped,
and are collected as time series.

Coservit is a company which has collected about half
a million different metrics for more than 5 years, across
dozens of thousands of physical hosts. We used this dataset to
experiment different approaches, aiming to predict the future
behavior of these metrics.

The goal of our system is to make predictions about the
health of online services in the near future, in order for system
administrators to perform preventive maintenance, instead of
reacting to problems and fixing them when they occur. This
is why we focused on a short time horizon, typically a few
hours. We applied linear regressions on the different collected

metrics, using historical data to train our system. We found
linear regression to be the best fit for this kind of data and
this horizon, thanks to its ability to identify local trends.

We added the constraint of creating a scalable system that is
not limited to a maximum number of metrics, or a single host.
It must also be as CPU-efficient as possible, and for instance
not waste resources learning metrics which are too difficult to
predict due to their volatile aspect.

The challenges involved to develop this system were the
huge amount of collected metrics, the processing time per
metric which had to be fast enough to be useful, and the need
to avoid false positives. Our contributions are the description
of a scalable system, some optimizations we applied to it, and
its evaluation with industrial production data.

We found almost 60% of the observed metrics are suitable
for linear regression prediction; as detailed in Section II-D the
other ones are too volatile to be accurately predicted with this
method. The entire process of retrieving measurements, build-
ing the learning parameters, predicting the values, and storing
the results takes about one second per metric. Moreover, it
scales linearly up to all the CPU cores we had at our disposal
for evaluating this system.

The rest of this paper is organized as follows: we first detail
our solution in Section II, before evaluating it in Section III.
We then present the related work in Section IV, and conclude
in Section V.

II. SYSTEM DESCRIPTION

A. Architecture

We base our architecture around a Cassandra database, used
for storing monitored metrics, predicted values, and prediction
error rates. Cassandra [1] is a column-oriented, distributed
database, designed for fault tolerance and scalability. Another
important framework we use to distribute work among dif-
ferent machines is Spark [2]: it provides the same properties
of fault tolerance and scalability, along a rich API for data
transformations and machine learning.

Figure 1 shows our architecture. We consider the monitoring
agents as black boxes, geographically scattered in different
datacenters, reporting metrics about the systems to a monitor-
ing broker. All the metrics are stored in Cassandra for further
processing.

Spark workers find the metric identifiers ready to be pro-
cessed in a RabbitMQ message queue, read all the data points
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Fig. 1: System architecture

associated to them from Cassandra, and run prediction algo-
rithms with MLlib (the machine learning library bundled with
Spark). The message queue serves as the producer/consumer
middleware, and is useful to regulate the flow of predicted
metrics and which metrics need to be processed.

Finally, end-users can use different front-ends, most notably
a web-based graphical interface alerting them about future
problems.

This architecture resembles a lambda-architecture [3]: it
leverages historical and real-time data to provide up-to-date
predictions combining both sources.

B. Data model

We use a Cassandra cluster to store all the collected metrics,
as well as the different computed predictions on them. The
relevant tables are:

• metrics: stores the metric names (e.g. open_sockets,
disk_freespace).

• metric_measurements: each row represents a measure-
ment, and consists of a metric id and a value, as well as a
timestamp, a unit, the warning and critical thresholds, and
if relevant the minimum and maximum possible values.

• metric_predictions: each row stores two predicted points
(a point is a value and its timestamp). The first point
represents the metric in the near future (a few seconds
ahead), while the second point is the metric in a more
distant future, determined by the prediction horizon.

• metric_errors: each row stores the root-mean-square er-
ror (RMSE) calculated in the blacklisting process. This
permits to later filter out metrics whose measured values
don’t align with the predictions.

The stored metrics are flattened: they don’t represent the
hierarchy of hosts, services and metrics found in some mon-
itoring engines. This is on purpose: Cassandra is not used to
store this kind of information, which is better managed by
specialized tools. In fact, this schema is monitoring engine-
agnostic: it is meant to be used by different engines as a sink
for their metrics.
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Fig. 2: Metric trend cases

C. Linear regression

We first discuss in this section why linear regression makes
sense compared to the legacy threshold methods, and then
describe how we applied it on our metrics.

1) Comparison with threshold: Most metrics have two
thresholds: warning, and critical. A system in the warning
state continues to properly run, but it is a signal that some
components might break. For instance a CPU whose load is
80% is still working, but approaching its maximum capacity.
Most systems will emit a notification when a metric is above
its warning threshold, but it doesn’t mean the trend will
continue and the metric will enter its critical state.

Looking at the evolution of data points among different
kinds of metrics, we identified 6 common scenarios, repre-
sented in Figure 2. Two situations lead to the perplexity point,
the point in time when metrics get closer to the warning
threshold, and from where three situations can arise. We
evaluate the benefits of linear regression versus the warning
threshold for each of them:

• Slow rise followed by slow rise: linear regression is a
perfect fit for this situation, as it will easily identify the
trend even before the warning zone is reached.

• Slow rise followed by quick rise: both linear regression
and the threshold system will be efficient if they refresh
their measurements often enough. If the rise is too fast,
they will both predict the issue too late.

• Slow rise followed by transient rise: if linear regression
can predict the future decrease, it will avoid sending a
false positive alert.

• Quick rise followed by slow rise: both systems might
give a false positive, or at least predict the issue too early.
However, linear regression will be better at predicting the
change to normal state again.

• Quick rise followed by quick rise: depending of the
frequency of the measurements, the threshold system
might alert too late about a fast arising problem, whereas
linear regression can predict it.

• Quick rise followed by transient rise: again, false posi-
tives might be sent by both systems, but linear regression
is better at anticipating the return to normal state.



Linear regression is better than the legacy threshold system
in 4 out of 6 scenarios, and better or equal in the other 2. That
makes it a good candidate for predicting the behavior of many
metrics.

2) Linear regression on monitoring metrics: We use ML-
lib (bundled with Spark) to perform a linear regression on
data distributed on different machines. The training phase
is performed independently for each metric, using stochastic
gradient descent and a history size of 30 points. We found this
value to be optimal: it gives good results (described in more
details in Section III) while keeping the training phase to a
reasonable time (~100 ms). An advantage of using stochastic
gradient descent w.r.t. other methods such as ARIMA is
the avoidance of tuning parameters for every metric. Once
performed, we store the prediction results back into Cassandra
in the metric_predictions table, available for consumption
by different front-ends, and by the error evaluation process
(Section II-D).

We didn’t explore in this work the potential correlations
between different metrics. We observed it often happens that
multiple errors are reported from the same machine in case
of a failure (if it runs multiple monitored services), but this is
less obvious when predicting problems in advance.

3) Prediction horizon: The prediction horizon (the estima-
tion of how long the predictions are valid) is complex; as it is
generally less and less correct over time. However, we noticed
that a maximum horizon of 8 hours is a good metric, and this
is the amount needed for reliability engineers to not wake up
overnight to fix services. The predictions are given as "best
effort": they represent the best values obtained by the system,
but can’t give guarantees about their veracity. It is important
to note they are continuously recomputed, and hence never
out-of-date.

D. Metrics selection

Not all metrics are good candidates for prediction. Some
metrics don’t show any pattern, and never respect their pre-
dicted values. We use a blacklisting algorithm to eliminate
them, in order to save computing resources and avoid false
positives. A weekly batch script performs an error evaluation
(RMSE, Root Mean Square Error) of the predicted values,
which are compared against the observed values for the week.
If the RMSE is higher than a given threshold, the metric is
blacklisted.

E. Optimizations

This section describes some interesting optimizations that
helped us greatly reduce the time and resources needed.

1) Caching: Spark implements a persistence mechanism,
which allows to cache data either on memory, and/or on disk.
By analyzing the data processing chain, one can spot the states
where saving data brings computation time benefits, typically
when one Dataframe is to be used by many other functions.
As sometimes persistence can reduce performances, when the
cost of caching data is greater than the benefits it provides,
comparing the performances both with and without persistence
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Fig. 3: Number of metrics handled in 15 minutes.

is rather necessary. In our case, we found that persisting the
measurements data for a metric after it was retrieved from
Cassandra greatly reduced the processing time.

2) Dataframes: Spark provides different APIs to develop-
ers, the main one being Resilient Distributed Dataset (RDD).
RDDs are suitable to apply transformations on large, un-
structured datasets. On the other hand, Dataframes, another
container for distributed data, relies on tabular data organized
into columns and associated to a schema, like an SQL ta-
ble. For relatively complex queries, using Dataframes brings
consequent speed-ups [4], because they benefit from advanced
optimizations such as a query planner (the Catalyst Optimizer).
Since our data is already organized into tables, we could
compare both approaches, RDDs and Dataframes, and the
latter were the fastest.

3) Cassandra optimizations: Cassandra being a distributed,
column-oriented database, the key to obtain good perfor-
mances is to design a schema around the expected types of
queries it will get, at the price of duplicating data. Cassandra is
optimized for writes, and in order to get good performances for
reads, it is necessary to well partition the data. Good practices
recommend two goals for that purpose: balance data evenly
across machines, and minimize the number of partitions that
need to be accessed for one query. It is recommended for a
partition to be a few hundreds of megabytes, and contain a few
hundreds of thousands of values. Our biggest table containing
the measurements as reported by the monitoring engine, and
every unique monitored service having up to a few metrics
updated at most every minute, we decided to keep monthly
partitions per service, which would weigh around 60 MB. It
is to be noted that yearly partitions would be sustainable by
Cassandra as well.

III. EVALUATION

A. Setup

We ran the experiments on 4 physical machines (HPE
Proliant DL380), with 16–28 hyper-threaded cores, and 128–
256 GB of memory. We installed Debian stretch 9.0, Spark
2.1.0, and Cassandra 3.0.9.

One machine is the master and the three others are slaves.
We replayed the production load triggered by the monitoring
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Fig. 4: CPU load and memory consumption, when running on
100 cores for 15 minutes.

boxes reporting metrics, and measured different parameters
under different conditions.

We replay a dataset made of production data recorded on
Coservit’s servers. It represents two weeks of data, for 424 206
unique metrics. In total, there are 1 500 335 458 data points,
whose size is about 15 GB in total. To get all these data points,
25 070 machines were monitored. An interesting deduction we
can make is that, on average, there are about 17 monitored
metrics per machine (however the standard deviation is about
30, so it highly depends on the type of machine).

B. Scaling

To check the system scaling performances, we measured
the amount of metrics which can be processed in a 15 minute
time range, varying the amount of slaves between 1 and 3,
and the number of CPU cores between 5 and 125. Figure 3
shows the results. When using only 5 cores, the system could
work on about 7000 metrics (± 1000, depending on the
number of slaves) in the given time range. This value scales
linearly with the number of CPU cores, for different amount
of slave machines; that’s because all metrics are independent
from each other and Spark manages this kind of setup very
well. The maximum performance obtained is when using the
125 CPU cores at our disposal, and corresponds to about
108 000 predicted metrics in 15 minutes, or 120 per second. In
conclusion, one metric takes about one second to be predicted
on one CPU core, end-to-end on the processing chain.

Figure 4 shows the CPU load and the memory used when
running the experiment with 100 cores. The machines are not
overloaded, which leaves room for other high-consumption
processes such as Cassandra. Two things are worth noting:
the CPU load reaches 100% at the beginning, which is due to
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the Spark jobs start-up. Afterwards, both CPU and memory
stay very stable: this is expected given the same work is done
for every metric.

C. Time repartition

We also instrumented the different components of the pro-
cessing chain, measuring the time taken by each of them, and
averaging it on all the metrics. Figure 5 shows the results.
Loading the data from Cassandra is what takes about half of
the total time; this is expected since Cassandra is optimized for
writes. Moreover, the network adds up to the latency. Creating
a Spark Dataframe is quite resource-consuming too, but once
it’s created it’s fast to work on it: the training and prediction
times are relatively short. Finally, saving the data back into
Cassandra and publishing an acknowledgement message to
RabbitMQ is fast. End-to-end, the processing time of one
metric on one CPU core is about one second. This is an
acceptable time given our requirements, and is way below the
prediction horizon (a few hours).

D. Load handling

Using these previous results:
• It takes 1 second to predict a metric (end-to-end);
• There are on average 17 monitored services per machine

(in the case of our dataset, a machine is either physical
or virtual);

and taking a pessimist average of 1 minute for the metric
sampling period (1 minute is usually the minimum period,
and most metrics don’t gain to be checked that often), we
deduce we can handle 60 × 24 = 1440 metrics on a 24-core
server. That means such a server can handle all the predictions
for about 85 machines, which is a very acceptable ratio. Since
this system scales linearly, increasing the number of cores will
automatically increase the metrics load a server can handle.

It is important to note that the described servers have
monitoring storage and prediction as their only role: they do
not run other monitoring software, user interface dashboards,
etc. If a 24-core server seems a lot to handle 85 machines
(or 1440 metrics), it appears the performances are better in
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Fig. 6: Measurements and predictions for two different metrics.

practice: the period is higher than 1 minute for most metrics,
and the black-listing process will reduce the load in any case
for less predictable metrics.

E. Predictions accuracy

Finally, we measured the root-mean-square error (RMSE)
for every predicted metric. Due to outliers and too volatile
metrics, it is quite high: its average is 822, with a standard
deviation of 23 687. However its median is at 0.0001: this tells
us most of the metrics have a very low RMSE. If we decide
a good prediction has an RMSE < 0.02, when we filter the
results to keep only those below this value, we get an average
at 0.001, and a standard deviation at 0.003. More interestingly,
58.5% of the metrics fall within that range, which is promising
for the benefits of linear regression over this system.

Figure 6 shows two examples of metrics measurements
and predictions. A vertical dotted line separates the training
values from both the predicted ones and what was actually
measured. The first one is the swap memory of a machine,
with up spikes probably due to the kernel swapping memory
before freeing it immediately afterwards. Linear regression
can’t predict spikes, and that is something we intend to try
with other, more complex, machine learning algorithms. Note
that the y-scale doesn’t begin at 0, hence the spikes are smaller
than what they appear. In these cases, not predicting spikes is
a feature, as they are sudden increases (or decreases) that are
back to normal almost immediately afterwards; hence we avoid
raising false positive alerts.

The second figure represents how full a disk partition is.
This time an actual problem is detected: the warning threshold
is reached. It is predicted a bit sooner than the actual problem
occurence, but this difference would have trimmed down when
getting new data and updating predictions.

IV. RELATED WORK

A. Time series

Time series forecasting is essential in many fields. Auto
regressive (AR) and moving average (MA) are two of the very
first linear statistical approaches of time series forecasting [5].

Auto Regressive Integrated Moving Average (ARIMA) is a lin-
ear forecasting model, which includes both AR and MA while
considering trends in the time series [6], [5]. With advances in
probabilistic machine learning, many studies utilize machine
learning algorithms for time series forecasting [7] along with
statistical approaches [8]. Support vector machines general-
ize well in high dimension [9]. With regression extension,
many studies used support vector regression for time series
prediction [10], [11], [12], [13], [14], [15]. Random Forest
is an ensemble of weak learners [16] which results in good
generalization. They are used in many time series prediction
applications [17], [18], [15].

B. Monitoring

Some industrial companies have implemented prediction
systems to prevent failures. Zabbix [19] uses different models
to predict the future value of a given metric, and hence predict
when a critical threshold will be reached. Triggers compute
the predicted values each time a new metric value arrives.
However, the choice of the model and the parameters tuning
has to be done manually for each metric, which is resource-
consuming and easily leads to errors. In our system, we use
cross-validation to automatically tune the parameters and we
blacklist metrics that are not good candidates for this system.

Other prediction systems focus on parallel problems. For
example, Chalermarrewong et al. use time series analysis for
hardware failure prediction [20]. They use self adjusting multi-
step ARMA to predict the future values which updates the
model according to paired t-test.

In the capacity planning domain, Azure [21] defines a set
of machine learning algorithms to compute predicted values;
which are however not predicted in real time.

Thermocast [22] focuses on predicting the thermal param-
eters of datacenters. Their approach is similar, but it solves a
different issue and doesn’t look at server problems but rather
the temperature of the various equipment.

Many systems (e.g. [23], [24]) leverage elastic computing to
predict Service-Level Agreement issues and provision enough
resources for anticipated workloads. Our solution is orthog-



onal to this problem, since some monitoring issues can be
consequences of changes in workloads, but not all of them.

Singh et al. describe an architecture for storing monitoring
data and update a wiki engine with the collected informa-
tion [25]. They present some similarities with our work in
their choice of distributed engines, notably Spark and MLlib.

V. CONCLUSION AND FUTURE WORK

Monitoring machines helps determining which services are
down, and which resources need to be upgraded. It also
generates a lot of time series points: thousands of metrics,
as diverse as a CPU load or a database latency, constitute a
set of metrics which can be leveraged for prediction purposes.
However, predicting the future behavior of monitoring metrics
poses a few challenges, the noteworthy ones being accuracy
and scalability.

We described and evaluated a system for leveraging this
opportunity, choosing linear regression as the main prediction
algorithm, for its simplicity and relevance for most of the
observed metrics. We detailed the inner workings of linear
regression, as opposed to the threshold system in place within
most monitoring software suites; as well as the main compo-
nents revolving around it: persistence storage in a Cassandra
database, work distribution among servers with Spark, and
blacklisting of less predictable metrics. The detailed evaluation
gave us great insights on this system, notably about its
scalability (it scales linearly up to at least 125 cores) and speed
(the end-to-end processing chain takes about one second on
one CPU core to predict one metric). We believe this system
adds a great value to monitoring tools, by giving system
administrators information about potential future problems and
downtimes.

In the future, we plan to experiment with deep learning, in
order to focus on long term global trends, rather than local
ones identified by linear regression. For blacklisted metrics
which are not good fits for linear regression, we plan to
implement other machine learning algorithms, and compare
the performances obtained. Lastly, we envisage to plug this
system to a ticketing mechanism used by clients to report
problems, in order to match them with their host errors.
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