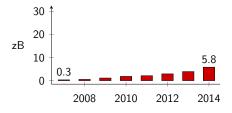


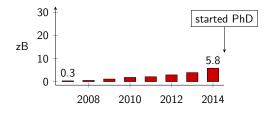
Contributions to Large-Scale Data Processing Systems PhD Defense

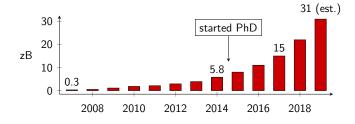
Matthieu Caneill

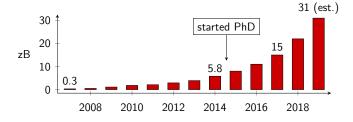
February 5, 2018

Daniel Hagimont INP Toulouse ENSEEIHT Jean-Marc Menaud IMT Atlantique **Sihem Amer-Yahia** CNRS / Université Grenoble Alpes Noël De Palma Université Grenoble Alpes

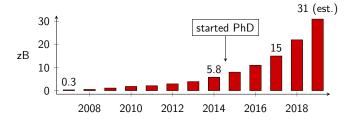








 $1zetabyte = 1000exabytes = 10^6petabytes = 10^9terabytes$



 $1zetabyte = 1000exabytes = 10^6 petabytes = 10^9 terabytes$

(1 zetabyte is 2 billion times my hard drive)

Motivation

Applications

► Genome sequencing and querying (human: 3 B base pairs)

- ► Genome sequencing and querying (human: 3 B base pairs)
- ▶ Web and social networks (Facebook: 600 TB/day in 2014)

- Genome sequencing and querying (human: 3 B base pairs)
- ▶ Web and social networks (Facebook: 600 TB/day in 2014)
- ▶ Particle physics (CERN: 1 PB/s of collision data)
- etc.

- Genome sequencing and querying (human: 3 B base pairs)
- ▶ Web and social networks (Facebook: 600 TB/day in 2014)
- ► Particle physics (CERN: 1 PB/s of collision data)
- etc.

Problems

Data management at scale

- Genome sequencing and querying (human: 3 B base pairs)
- ▶ Web and social networks (Facebook: 600 TB/day in 2014)
- ► Particle physics (CERN: 1 PB/s of collision data)
- etc.

Problems

- Data management at scale
- Data processing in reasonable time

- Genome sequencing and querying (human: 3 B base pairs)
- ▶ Web and social networks (Facebook: 600 TB/day in 2014)
- ▶ Particle physics (CERN: 1 PB/s of collision data)
- etc.

Problems

- Data management at scale
- Data processing in reasonable time
- ... and reasonable price

Research questions

How to design...

► An industrial system to handle monitoring data and make predictions about future failures?

Research questions

How to design...

- An industrial system to handle monitoring data and make predictions about future failures?
- ► An algorithm to improve locality in distributed streaming engines?

How to design...

- An industrial system to handle monitoring data and make predictions about future failures?
- ► An algorithm to improve locality in distributed streaming engines?
- A framework to compose data processing algorithms in a descriptive fashion, while reasoning on high level abstractions?

Structure of this presentation

- 1. Online metrics prediction in monitoring systems
- 2. Locality data routing
- 3. λ -blocks
- 4. Conclusion



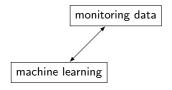
Actors and roles of Smart Support Center

- ► Coservit: Monitoring services
- ▶ **HP**: Cloud computing, hardware
- ▶ LIG AMA: Machine learning
- ▶ **LIG ERODS**: Cloud computing, systems

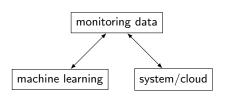
Scope of Smart Support Center

monitoring data

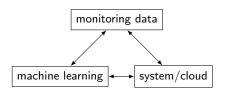
Monitoring insights



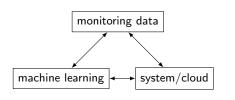
- Monitoring insights
- ► Failure prediction



- Monitoring insights
- ► Failure prediction
- Infrastructure scaling



- Monitoring insights
- ► Failure prediction
- Infrastructure scaling



- Monitoring insights
- ► Failure prediction
- Infrastructure scaling
- More server uptime

Challenges

► Scale monitoring infrastructure (from 1 to *N* nodes)

Challenges

- ► Scale monitoring infrastructure (from 1 to *N* nodes)
- System design for low latency analytics

Challenges

- Scale monitoring infrastructure (from 1 to N nodes)
- System design for low latency analytics
- Fault tolerance

Metrics

 Monitoring metric: observation point on a server in a datacenter

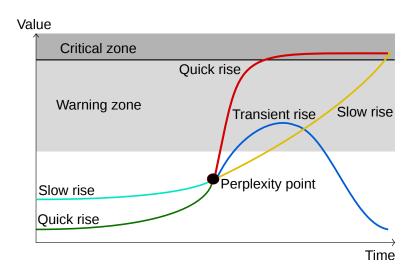
- Monitoring metric: observation point on a server in a datacenter
- ► CPU load, memory, service status

- Monitoring metric: observation point on a server in a datacenter
- ► CPU load, memory, service status
- Reported by agents, processed, and stored

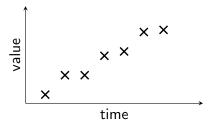
- Monitoring metric: observation point on a server in a datacenter
- ► CPU load, memory, service status
- Reported by agents, processed, and stored
- Computed as time-series

- Monitoring metric: observation point on a server in a datacenter
- ► CPU load, memory, service status
- Reported by agents, processed, and stored
- Computed as time-series
- Associated to thresholds: warning and critical

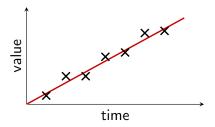
Metrics behaviour: 6 scenarios



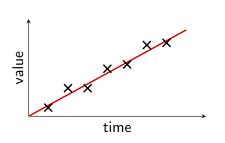
Linear regression



Linear regression

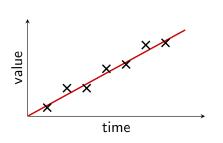


Linear regression



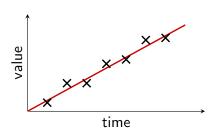
 Ability to identify local trends (few hours)

Linear regression



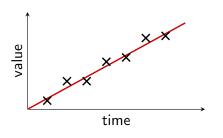
- Ability to identify local trends (few hours)
- ▶ Fast to compute

Linear regression



- Ability to identify local trends (few hours)
- Fast to compute
- Good candidate to avoid false positives (peaks)

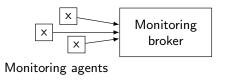
Linear regression

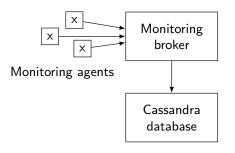


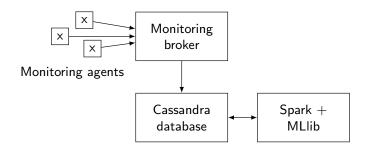
- Ability to identify local trends (few hours)
- Fast to compute
- Good candidate to avoid false positives (peaks)
- Library: MLlib (part of Apache Spark)

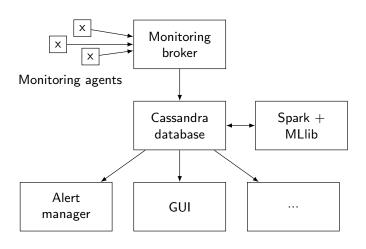
System architecture

Monitoring agents









System architecture

Desired properties

 Scalable: up to a few servers (150 CPU cores) to handle Coservit's load

System architecture

Desired properties

- Scalable: up to a few servers (150 CPU cores) to handle Coservit's load
- ▶ End-to-end fault tolerance: metrics can never be lost

System architecture

Desired properties

- Scalable: up to a few servers (150 CPU cores) to handle Coservit's load
- ▶ End-to-end fault tolerance: metrics can never be lost
- ▶ Performances: "fast" to compute metrics predictions

Evaluation

Setup

- ► Hardware: 4 servers (16–28 cores, 128–256 GB RAM)
- Dataset: Replay on production data recorded at Coservit
- 424 206 metrics, 1.5 billion data points monitored on 25 070 servers

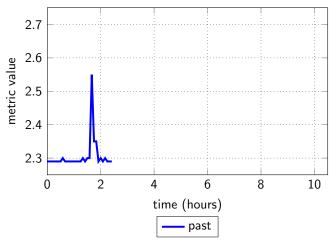
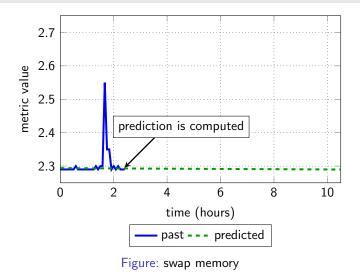
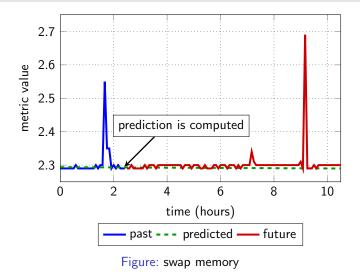


Figure: swap memory





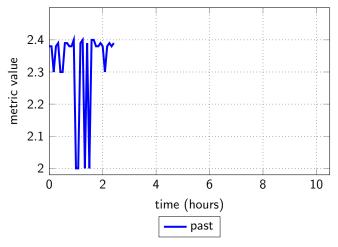


Figure: physical memory

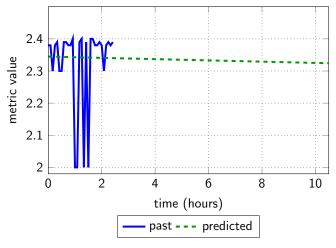


Figure: physical memory

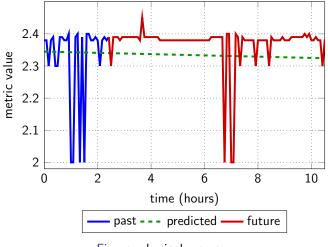


Figure: physical memory

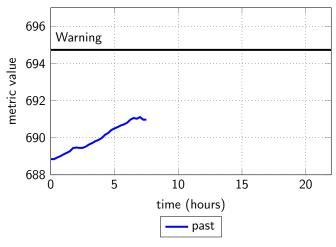


Figure: disk partition

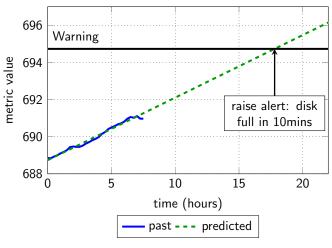
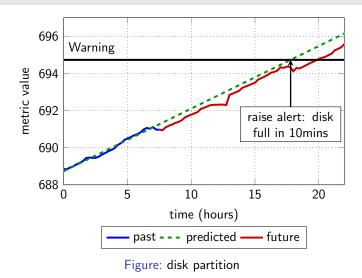


Figure: disk partition



Evaluation

Metric blacklisting

▶ Some metrics are too volatile and hard to predict

Evaluation

- ▶ Some metrics are too volatile and hard to predict
- ➤ To avoid false positives/negatives, and save resources, they are blacklisted

Evaluation

- ▶ Some metrics are too volatile and hard to predict
- ➤ To avoid false positives/negatives, and save resources, they are blacklisted
- Root Mean Square Error evaluated weekly

Evaluation

- ▶ Some metrics are too volatile and hard to predict
- ➤ To avoid false positives/negatives, and save resources, they are blacklisted
- Root Mean Square Error evaluated weekly
- Metrics (temporarily) blacklisted if their RMSE > threshold

Evaluation

- ▶ Some metrics are too volatile and hard to predict
- ➤ To avoid false positives/negatives, and save resources, they are blacklisted
- Root Mean Square Error evaluated weekly
- Metrics (temporarily) blacklisted if their RMSE > threshold
- ightharpoonup 58.5% of the metrics have a low RMSE ightharpoonup good predictions

Evaluation

CPU load and memory consumption

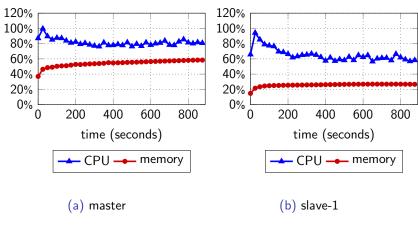


Figure: Running on 4 machines and 100 cores for 15 minutes.

Evaluation

Time repartition

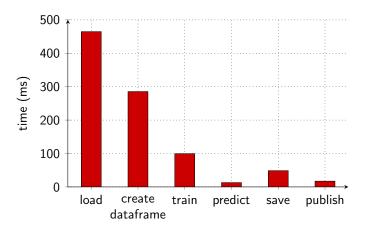


Figure: Time repartition for predicting a metric.

Evaluation

Load handling

▶ End-to-end process for the prediction of 1 metric: 1 second.

Evaluation

Load handling

- ▶ End-to-end process for the prediction of 1 metric: 1 second.
- One monitoring server (with 24 cores) can handle the load of 1440 metrics (at worst), which is 85 servers on average.

Evaluation

Load handling: linear scaling

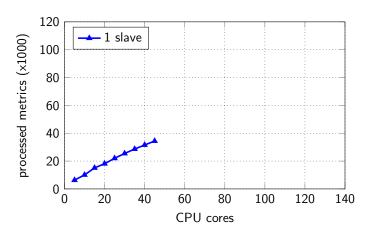


Figure: Amount of metrics handled in 15 minutes.

Evaluation

Load handling: linear scaling

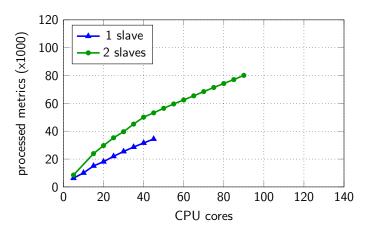


Figure: Amount of metrics handled in 15 minutes.

Evaluation

Load handling: linear scaling

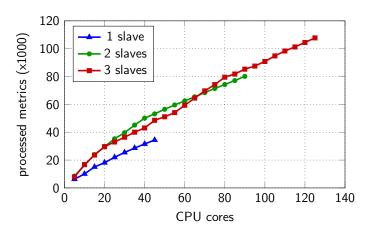


Figure: Amount of metrics handled in 15 minutes.

Related work

Positioning

No published work exhibits the same system (end-to-end system for monitoring metrics prediction, storage and blacklisting).

Prediction models

► Hardware failures [CAS12]

Related work

Positioning

No published work exhibits the same system (end-to-end system for monitoring metrics prediction, storage and blacklisting).

Prediction models

- ► Hardware failures [CAS12]
- Capacity planning (e.g. Microsoft Azure [mic])

Related work

Positioning

No published work exhibits the same system (end-to-end system for monitoring metrics prediction, storage and blacklisting).

Prediction models

- ► Hardware failures [CAS12]
- Capacity planning (e.g. Microsoft Azure [mic])
- ▶ Datacenter temperature (e.g. Thermocast [LLL+11])

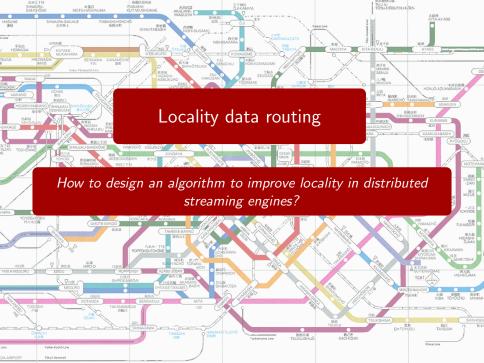
Related work

Positioning

No published work exhibits the same system (end-to-end system for monitoring metrics prediction, storage and blacklisting).

Prediction models

- ► Hardware failures [CAS12]
- Capacity planning (e.g. Microsoft Azure [mic])
- Datacenter temperature (e.g. Thermocast [LLL+11])
- Monitoring metrics (e.g. Zabbix [zab] with manual tuning)



Actors

Collaboration with **Vincent Leroy** (SLIDE) and **Ahmed El-Rheddane** (ERODS).

Distributed streaming engines

Goals

► Real-time message handling

Distributed streaming engines

Goals

- Real-time message handling
- ► Real-time metric calculations

Distributed streaming engines

Goals

- Real-time message handling
- ► Real-time metric calculations
- Parallelization

Distributed streaming engines

Goals

- Real-time message handling
- Real-time metric calculations
- Parallelization
- ► Fault-tolerance

Distributed streaming engines

Apache Storm \rightarrow topologies.

Distributed streaming engines

Apache Storm \rightarrow topologies.

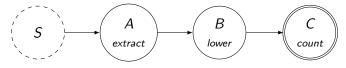


Figure: Trending hashtags topology.

S sends tweets, operator A extract hashtags, B converts them to lowercase, and C counts the frequency of each hashtag.

Distributed streaming engines

Apache Storm \rightarrow topologies.

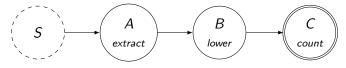


Figure: Trending hashtags topology.

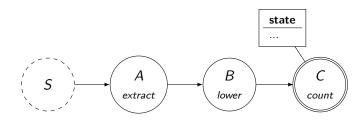
S sends tweets, operator A extract hashtags, B converts them to lowercase, and C counts the frequency of each hashtag.

Division into tasks \rightarrow distribution and parallelization made easy.

Stateful operators

States are associated to keys

For example, the operator C can keep the list of trending hashtags (values) per location (keys).



Stateful operators

Parallelization

To keep a consistent state, same keys must be routed to the same instance.

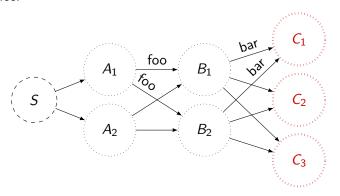
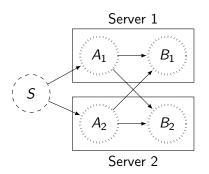


Figure: Tasks A and B are stateless, C is stateful.

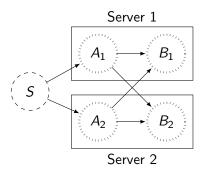
Situation

Let's have two stateful operators, each with two instances.



Situation

Let's have two stateful operators, each with two instances.

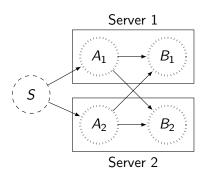


Goal

Minimize the traffic between the machines: $A1 \rightarrow B2$ and $A2 \rightarrow B1$. By default, locality = 1/parallelism

Situation

Let's have two stateful operators, each with two instances.



Goal

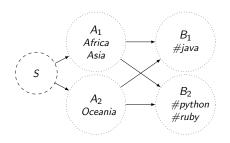
Minimize the traffic between the machines: $A1 \rightarrow B2$ and $A2 \rightarrow B1$. By default, locality = 1/parallelism

Constraint

Keep a good load balance between the machines.

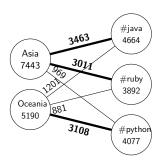
Keys correlation

Dynamically instrument the keys couples and represent them with a bipartite graph.



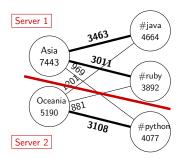
Keys correlation

Dynamically instrument the keys couples and represent them with a bipartite graph.



Keys correlation

Dynamically instrument the keys couples and represent them with a bipartite graph.

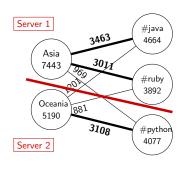


Routing tables

- S: Asia \rightarrow A₁ Oceania \rightarrow A₂
- $A_1: \#java \rightarrow B_1$ $\#ruby \rightarrow B_1$ $\#python \rightarrow B_2$
- ► A_2 : **#python** \rightarrow B_2 #java \rightarrow B_1 #ruby \rightarrow B_1

Keys correlation

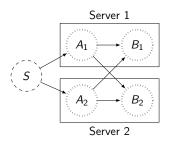
Dynamically instrument the keys couples and represent them with a bipartite graph.



Routing tables

- S: Asia \rightarrow A₁ Oceania \rightarrow A₂
- ► A_1 : **#java** \rightarrow B_1 **#ruby** \rightarrow B_1 **#python** \rightarrow B_2
- ► A_2 : **#python** \rightarrow B_2 #java \rightarrow B_1 #ruby \rightarrow B_1

Graph partitioning \rightarrow optimized routing, favorizing local links.

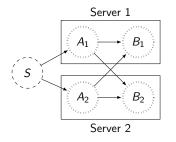


S	
key	route

Α	
key	route

Message: #python doesn't have braces

Posted from: Oceania

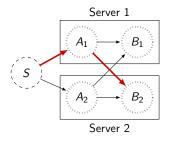


S	
key	route

Α	
key	route

Message: #python doesn't have braces

Posted from: Oceania

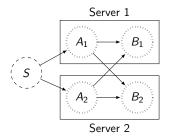


S	
key	route
Oceania	A1

Α	
key	route
python	B2

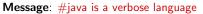
Message: #java is a verbose language

Posted from: Asia

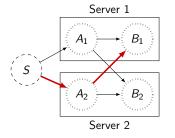


S	
key	route
Oceania	A1

Α	
key	route
python	B2

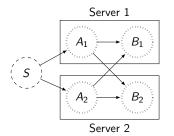


Posted from: Asia



S	
key	route
Oceania	A1
Asia	A2

Α	
key	route
python	B2
java	B1

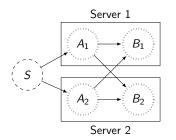


S	
key	route
Oceania	A1
Asia	A2

Α	
key	route
python	B2
java	B1

Reconfiguration is computed and applied

Message: Posted from:



S	
key	route
Oceania	A1
Asia	A2

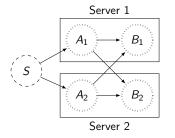
Α	
key	route
python	B1
java	B2

Reconfiguration is computed and applied

Correlation between Oceania/python and Asia/java

Message: #python is pretty cool!

Posted from: Oceania

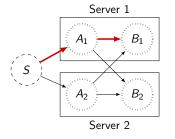


S	
key	route
Oceania	A1
Asia	A2

Α	
key	route
python	B1
java	B2

Message: #python is pretty cool!

Posted from: Oceania



S	
key	route
Oceania	A1
Asia	A2

Α	
key	route
python	B1
java	B2

Trends evolve with time Correlations between keys change frequently.

Trends evolve with time

Correlations between keys change frequently.

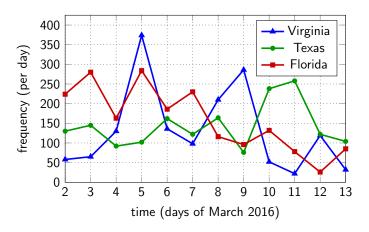


Figure: #nevertrump, in March 2016

Locality decay

▶ Keys correlations evolve with time.

Locality decay

- ▶ Keys correlations evolve with time.
- Routing tables optimized by examining old data lead to decreased locality.

Locality decay

- Keys correlations evolve with time.
- Routing tables optimized by examining old data lead to decreased locality.

Reconfiguration

▶ We re-compute the tables every *N* minutes.

Locality decay

- Keys correlations evolve with time.
- Routing tables optimized by examining old data lead to decreased locality.

Reconfiguration

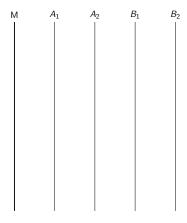
- ▶ We re-compute the tables every *N* minutes.
- Difficulty: keep the state consistent.

Reconfiguration protocol

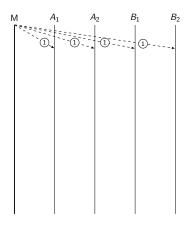
Solution: online reconfiguration protocol

- update the routing tables in a live system
- without losing any message and state

Reconfiguration protocol

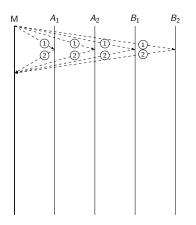


Reconfiguration protocol



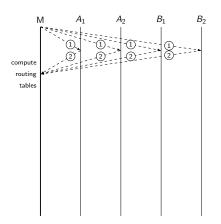
1 Get statistics

Reconfiguration protocol



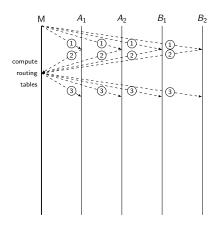
- ① Get statistics
- ② Send statistics

Reconfiguration protocol



- ① Get statistics
- ② Send statistics

Reconfiguration protocol

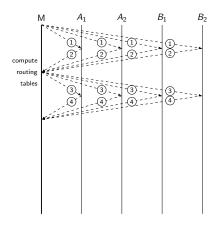


- ① Get statistics
- ② Send statistics

Partition graph, compute routing tables

(3) Send reconfiguration

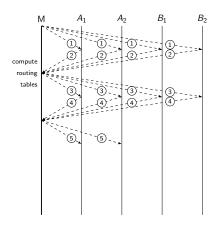
Reconfiguration protocol



- (1) Get statistics
- ② Send statistics

- 3 Send reconfiguration
- (4) Send ACK

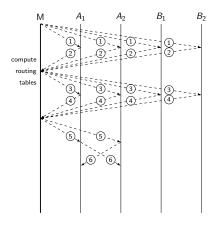
Reconfiguration protocol



- ① Get statistics
- ② Send statistics

- 3 Send reconfiguration
- (4) Send ACK
- ⑤ Propagate

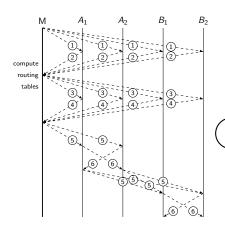
Reconfiguration protocol



- (1) Get statistics
- ② Send statistics

- ③ Send reconfiguration
- 4 Send ACK
- (5) Propagate
- 6 Transfer key states

Reconfiguration protocol



- (1) Get statistics
- ② Send statistics

- 3 Send reconfiguration
- 4 Send ACK
- ⑤ Propagate
- 6 Transfer key states Propagate to next operator

Evaluation

Datasets

- From Flickr and Twitter
- Fields: location (country or place), hashtag
- ► Size: 173M records (Flickr), 100M (Twitter)

Evaluation

Datasets

- From Flickr and Twitter
- Fields: location (country or place), hashtag
- Size: 173M records (Flickr), 100M (Twitter)

Setup

- ▶ 8× 128 GB RAM, 20 cores.
- Computation of aggregated statistics (stateful workers).
- ▶ Parallelism (2..6), network speed (1Gb/s | 10Gb/s), message size (0..20kB).

Evaluation

Great speed-up when network is the bottleneck.

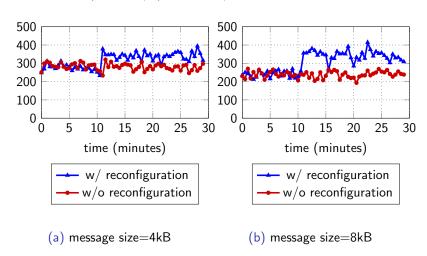
Evaluation

Great speed-up when network is the bottleneck.

Highly dependent on message size.

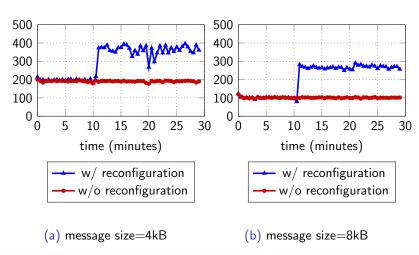
Evaluation - Flickr

Throughput (Ktuples/s) on 10Gb/s network, parallelism 6



Evaluation - Flickr

Throughput (Ktuples/s) on 1Gb/s network, parallelism 6



Evaluation - Flickr

Average throughput with 1Gb/s network, 4kB message size

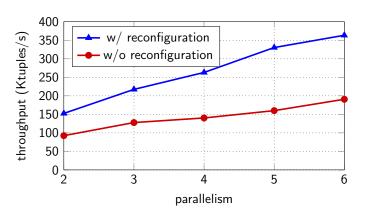
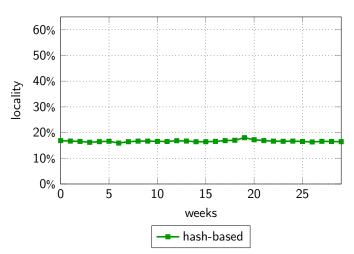


Figure: Average throughput, measured after the first reconfiguration.

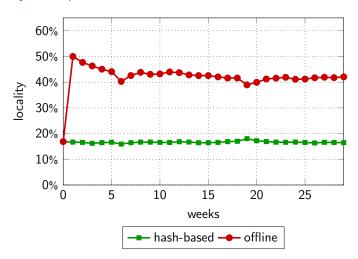
Evaluation - Flickr

Locality, with parallelism 6



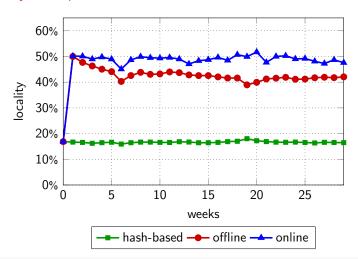
Evaluation - Flickr

Locality, with parallelism 6



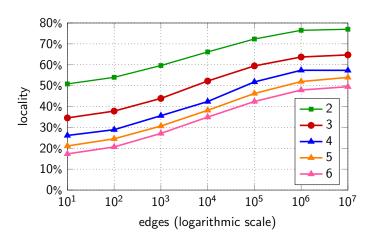
Evaluation - Flickr

Locality, with parallelism 6



Evaluation - Flickr

Locality when changing the number of collected key correlations



Related work

Scheduling: placement of operators on servers

- Using the topology [ABQ13]
- Using observed communication patterns [ABQ13]
- Using observed and/or estimated CPU and memory patterns [FB15, PHH+15]

Related work

Scheduling: placement of operators on servers

- Using the topology [ABQ13]
- Using observed communication patterns [ABQ13]
- Using observed and/or estimated CPU and memory patterns [FB15, PHH+15]

Load balancing: limit impact of data skew

- ▶ Partial key grouping [NMG⁺15]
- Special routing for frequent keys [RQA+15]

Related work

Scheduling: placement of operators on servers

- Using the topology [ABQ13]
- Using observed communication patterns [ABQ13]
- Using observed and/or estimated CPU and memory patterns [FB15, PHH+15]

Load balancing: limit impact of data skew

- ▶ Partial key grouping [NMG⁺15]
- Special routing for frequent keys [RQA+15]

Co-location of correlated keys

Databases partitions [CJZM10], social networks [BJJL13]

GOTO E SPAGHETTI CODE λ -blocks How to design a framework to compose data processing algorithms in a descriptive fashion, while reasoning on high level abstractions?

λ -blocks

Design goals

► A data processing abstraction

- A data processing abstraction
- A graph of code blocks to represent an end-to-end processing system

- A data processing abstraction
- ► A graph of code blocks to represent an end-to-end processing system
- ► Separation of concerns: low-level data operations, high-level data processing programs

- A data processing abstraction
- A graph of code blocks to represent an end-to-end processing system
- Separation of concerns: low-level data operations, high-level data processing programs
- ► Maximize reuse of code

- A data processing abstraction
- A graph of code blocks to represent an end-to-end processing system
- Separation of concerns: low-level data operations, high-level data processing programs
- Maximize reuse of code
- Compatible with existing (specialized) frameworks and possibility to mix them

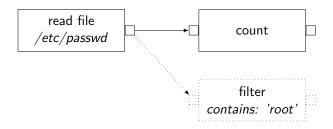
- A data processing abstraction
- A graph of code blocks to represent an end-to-end processing system
- Separation of concerns: low-level data operations, high-level data processing programs
- Maximize reuse of code
- Compatible with existing (specialized) frameworks and possibility to mix them
- Graph manipulation toolkit

- A data processing abstraction
- A graph of code blocks to represent an end-to-end processing system
- Separation of concerns: low-level data operations, high-level data processing programs
- Maximize reuse of code
- Compatible with existing (specialized) frameworks and possibility to mix them
- Graph manipulation toolkit
- Bring simplicity to large-scale data processing

λ -blocks

Topologies

read file /etc/passwd




```
"""Counts system users.
"""

def main():
    with open('/etc/passwd') as f:
        return len(f.readlines())

if __name__ == '__main__':
    print(main())
```



```
"""Counts system users.
11 11 11
def main():
    with open('/etc/passwd') as f:
        return len(f.readlines())
if __name__ == '__main__':
    print(main())
$ wc -1 /etc/passwd
```



```
"""Counts system users.
11 11 11
def main():
    with open('/etc/passwd') as f:
        return len(f.readlines())
if __name__ == '__main__':
    print(main())
```

λ -blocks


```
name: count_users
description: Count number of system users
modules: [lb.blocks.foo]
- block: readfile
  name: my_readfile
  args:
    filename: /etc/passwd
- block: count
  name: my_count
  inputs:
    data: my_readfile.result
```


Blocks

- read_http
- plot_bars
- show_console
- write_line
- write_lines
- split
- concatenate
- map_list
- flatMap
- ▶ flatten_list
- group_by_count
- sort
- get_spark_context
- spark_readfile
- spark_text_to_words
- spark_map
- spark_filter

- spark_flatMap
- spark_mapPartitions
- spark_sample
- spark_union
- spark_intersection
- spark_distinct
- spark_groupByKey
- spark_reduceByKeyspark_aggregateByKey
- spark_sortByKey
- spark_join
- ► spark_cogroup
- spark_cartesian
- spark_pipe
- spark_coalesce
- spark_repartition
- spark_reduce

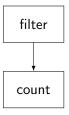
- spark_collect
- spark_count
- spark_first
- spark_take
- spark_takeSample
- spark_takeOrdered
- ► spark_saveAsTextFile
- spark_countByKey
- spark_foreachspark_add
- spark_swap
- twitter_search
- cat
- grep
- cut
- head
- tail

Blocks

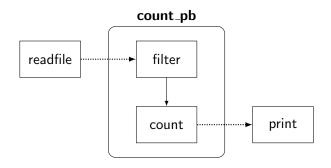
```
Oblock(engine='localpython')
def take(n: int=0):
    """Truncates a list of integers.
    :param int n: The length of the desired result.
    :input List[int] data: The list of items to truncate.
    :output List[int] result: The truncated result.
    11 11 11
    def inner(data: List[int])->ReturnType[List[int]]:
        assert n <= len(data)</pre>
        return ReturnEntry(result=data[:n])
    return inner
```


Sub-topologies

count_pb



Sub-topologies



Sub-topologies

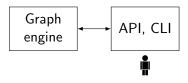
```
name: count_pb
- block: filter
 name: filter
  args:
    contains: error
  inputs:
    data:
          $inputs.data
- block: count
  name: count
  inputs:
    data: filter.result
```

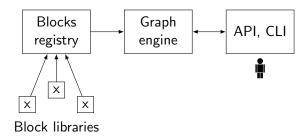

Sub-topologies

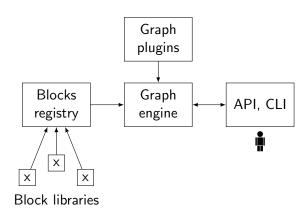
```
name: count_pb
- block: filter
  name: filter
  args:
    contains: error
  inputs:
    data: $inputs.data
- block: count
  name: count
  inputs:
    data: filter.result
```

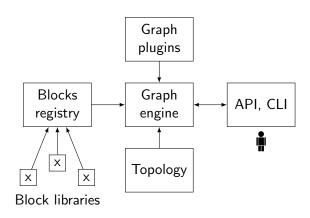
```
name: foo_errors
- block: readfile
 name: readfile
 args:
    filename: foo.log
- topology : count_pb
 name: count_pb
  bind in:
    data: readfile.result
  bind out :
    result: count.result
- block: print
 name: print
  inputs:
```

data: count_pb.result









Graph manipulations

▶ Verification (e.g. type checking)

- ▶ Verification (e.g. type checking)
- ▶ Instrumentation

- Verification (e.g. type checking)
- Instrumentation
- Caching

- Verification (e.g. type checking)
- Instrumentation
- Caching
- Debugging tools

- ► Verification (e.g. type checking)
- Instrumentation
- Caching
- Debugging tools
- Optimizations

- Verification (e.g. type checking)
- Instrumentation
- Caching
- Debugging tools
- Optimizations
- Monitoring

- ▶ Verification (e.g. type checking)
- Instrumentation
- Caching
- Debugging tools
- Optimizations
- Monitoring
- Program reasoning and semantics

Graph manipulations

► Reasoning on the computation graph as a high-level object

- ▶ Reasoning on the computation graph as a high-level object
- Plugin system

- ▶ Reasoning on the computation graph as a high-level object
- Plugin system
- ► Hooks:
 - before_graph_execution
 pre-processing, optimizations, verifications

- ▶ Reasoning on the computation graph as a high-level object
- Plugin system
- ► Hooks:
 - before_graph_execution pre-processing, optimizations, verifications
 - after_graph_execution
 post-processing

- Reasoning on the computation graph as a high-level object
- Plugin system
- ► Hooks:
 - before_graph_execution pre-processing, optimizations, verifications
 - after_graph_execution post-processing
 - before_block_execution observation, optimizations

- Reasoning on the computation graph as a high-level object
- Plugin system
- ► Hooks:
 - before_graph_execution pre-processing, optimizations, verifications
 - after_graph_execution
 post-processing
 - before_block_execution observation, optimizations
 - after_block_execution observation

Graph manipulation example: instrumentation (excerpt)

```
by_block = {} # timing by block: begin, duration

@before_block_execution
def store_begin_time(block):
   name = block.fields['name']
   by_block[name]['begin'] = time.time()
```


Graph manipulation example: instrumentation (excerpt)

```
by_block = {} # timing by block: begin, duration
@before_block_execution
def store_begin_time(block):
    name = block.fields['name']
    by_block[name]['begin'] = time.time()
@after_block_execution
def store_end_time(block, results):
    name = block.fields['name']
    by_block[name]['duration'] = \
      time.time() - by_block[name]['begin']
```


Graph manipulation example: instrumentation (excerpt)

Graph manipulation example: instrumentation

block	duration (ms)
read http	818
write lines	54
grep	49
split	20

Setup

- ▶ Wordcount over https: local machine, 8 cores, 16 GB RAM
- ▶ Wordcount over disk: local machine, 8 cores, 16 GB RAM
- ▶ PageRank on Spark: Spark on 1 server (24 cores, 128 GB RAM)

Performances

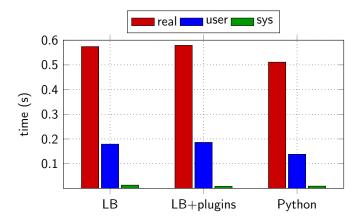


Figure: Wordcount over https: Twitter feed.

Performances

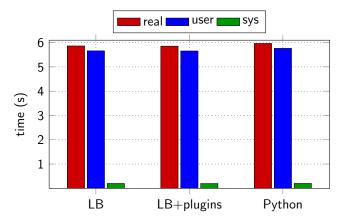


Figure: Wordcount over disk: Wikipedia dataset.

Performances

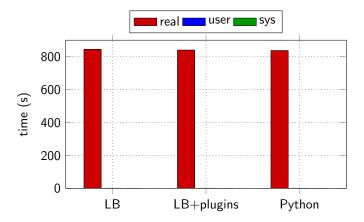


Figure: PageRank on Wikipedia hyperlinks with Spark.

Evaluation

Maximum overhead measured per topology: 50 ms

Related work

Dataflow programming

- ► ML pipelines: scikit-learn [PVG⁺11], Spark [The17a], Orange framework [DCE⁺13]
- ► Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Related work

Dataflow programming

- ► ML pipelines: scikit-learn [PVG⁺11], Spark [The17a], Orange framework [DCE⁺13]
- ▶ Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

► Recognition over recall, immediate feedback [BGK⁺17]

Related work

Dataflow programming

- ► ML pipelines: scikit-learn [PVG⁺11], Spark [The17a], Orange framework [DCE⁺13]
- ► Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

► Recognition over recall, immediate feedback [BGK+17]

Graphs from configuration

Pyleus [Yel16], Storm Flux [The17b]

Related work

Dataflow programming

- ► ML pipelines: scikit-learn [PVG⁺11], Spark [The17a], Orange framework [DCE⁺13]
- ► Real-time: Apache Beam [apa], StreamPipes [RKHS15]

Blocks programming

► Recognition over recall, immediate feedback [BGK⁺17]

Graphs from configuration

Pyleus [Yel16], Storm Flux [The17b]

Other

"Serverless" architectures and stateless functions [JVSR17]

Context

Computer systems to process large quantities of data.

Context

Computer systems to process large quantities of data.

Problems: how to design...

- ► An industrial system to handle monitoring data and make predictions about future failures?
- ► An algorithm to improve locality in distributed streaming engines?
- ▶ A framework to compose data processing algorithms in a descriptive fashion, while reasoning on high level abstractions?

Contributions

Metrics prediction

Locality routing

 λ -blocks

Contributions

Contributions

	Metrics prediction	Locality routing	λ -blocks
What it is	Industrial system	Online routing library	Data processing abstraction
Layer	End-to-end	Low	High

Contributions

	Metrics prediction	Locality routing	λ -blocks
What it is	Industrial system	Online routing library	Data processing abstraction
Layer	End-to-end	Low	High
Improves	Uptimes	Throughput	Programmability

Future work

Metrics prediction in monitoring systems

- Predictions on long-term global trends
- Ticketing mechanism

Future work

Metrics prediction in monitoring systems

- Predictions on long-term global trends
- Ticketing mechanism

Locality data routing

- Replace binary locality/non-locality with distance
- Smarter way to determine when to reschedule
- Extend to more complex topologies

Future work

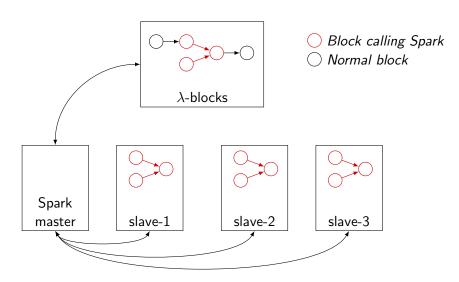
λ -blocks

- ► Explore more graph manipulation abstractions (complexity analysis, serialization, verification...)
- Streaming and online operations
- ► Tight integration with clusters (data storage, caches, etc)

Thanks! Questions?

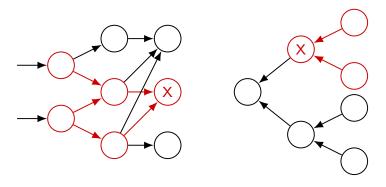
λ -blocks

Using a Spark cluster



λ -blocks

Signature algorithm



H(B) = h(B.name, block name (not instance name) B.args, list of (name, value) tuples B.inputs) list of (name, H(block), connector) tuples

λ -blocks

Evaluation

Engine instrumentation

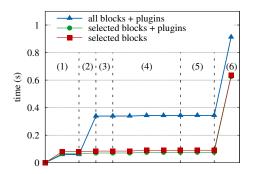


Figure: Wordcount program running under different setups. (1) Startup (modules import, etc); (2) Blocks registry creation, block modules import; (3) Plugin import; (4) YAML parsing and graph creation; (5) Graph checks; (6) Graph execution.

Metrics prediction in monitoring systems

Database schema

metrics

metric_id uuid metric_name text group_id uuid

predictions

metric_id uuid timestamp int predicted_values list

measurements

metric_id uuid timestamp int text warn crit text double max min double double value metric_name text metric unit text

Images credits

- Data Center operators verifying network cable integrity, CC-BY-SA, https://commons.wikimedia.org/wiki/File: Dc_cabling_50.jpg
- ► Tokyo metro map, http://bento.com/subtop5.html
- Goto e spaghetti code, http://blogbv2.altervista.org/ HD/il-goto-e-la-buona-programmazione-parte-ii/

Bibliography I

Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. Adaptive online scheduling in storm.

In Proceedings of the 7th ACM International Conference on Distributed Event-based Systems, DEBS '13, pages 207–218. ACM, 2013.

Apache Beam. https://beam.apache.org/.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak.

Learnable programming: Blocks and beyond.

Commun. ACM, 60(6):72-80, May 2017.

Bibliography II

T. Chalermarrewong, T. Achalakul, and S. C. W. See. Failure prediction of data centers using time series and fault tree analysis.

In 2012 IEEE 18th International Conference on Parallel and Distributed Systems, pages 794–799, Dec 2012.

Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: A workload-driven approach to database replication and partitioning.

Proc. VLDB Endow., 3(1-2):48-57, September 2010.

Bibliography III

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak, Anže Starič, Miha Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar, Marinka Žitnik, and Blaž Zupan. Orange: Data mining toolbox in python.

Journal of Machine Learning Research, 14:2349–2353, 2013.

Lorenz Fischer and Abraham Bernstein.

Workload scheduling in distributed stream processors using graph partitioning.

In 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015, pages 124–133, 2015.

Bibliography IV

Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

Occupy the cloud: Distributed computing for the 99%. arXiv preprint arXiv:1702.04024, 2017.

Lei Li, Chieh-Jan Mike Liang, Jie Liu, Suman Nath, Andreas Terzis, and Christos Faloutsos.

Thermocast: A cyber-physical forecasting model for datacenters.

In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pages 1370–1378, New York, NY, USA, 2011. ACM.

Bibliography V

Microsoft cloud azure.

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice.

Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David García-Soriano, Nicolas Kourtellis, and Marco Serafini.

The power of both choices: Practical load balancing for distributed stream processing engines.

In 31st IEEE International Conference on Data Engineering, ICDE, pages 137–148, 2015.

Bibliography VI

Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell.

R-storm: Resource-aware scheduling in storm.

In *Proceedings of the 16th Annual Middleware Conference*, Middleware '15, pages 149–161, New York, NY, USA, 2015. ACM.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

Bibliography VII

Dominik Riemer, Florian Kaulfersch, Robin Hutmacher, and Ljiljana Stojanovic.

Streampipes: solving the challenge with semantic stream processing pipelines.

In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems, pages 330–331. ACM, 2015.

Nicoló Rivetti, Leonardo Querzoni, Emmanuelle Anceaume, Yann Busnel, and Bruno Sericola.

Efficient key grouping for near-optimal load balancing in stream processing systems.

In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems, DEBS '15, pages 80–91, New York, NY, USA, 2015. ACM.

Bibliography VIII

The Apache Spark developers.

ML Pipelines.

https:

//spark.apache.org/docs/latest/ml-pipeline.html,
2017.

The Apache Storm developers.

Flux.

http://storm.apache.org/releases/2.0.0-SNAPSHOT/flux.html, 2017.

YelpArchive.

Pyleus.

https://github.com/YelpArchive/pyleus, 2016.

Bibliography IX

Zabbix prediction triggers.

https://www.zabbix.com/documentation/3.0/manual/config/triggers/prediction.