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Metrics prediction

Metrics behaviour: 6 scenarios

Value

Critical zone

Warning zone

Quick rise

Slow riseTransient rise

Perplexity pointSlow rise

Quick rise

Time
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I Good candidate to avoid
false positives (peaks)

I Library: MLlib (part of
Apache Spark)
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Metrics prediction

Metric blacklisting

I Some metrics are too volatile and hard to predict

I To avoid false positives/negatives, and save resources, they
are blacklisted

I Root Mean Square Error evaluated weekly

I Metrics (temporarily) blacklisted if their RMSE > threshold

I 58.5% of the metrics have a low RMSE → good predictions
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Evaluation

Setup

I Hardware: 4 servers (16–28 cores, 128–256 GB RAM)

I Dataset: Replay on production data recorded at Coservit

I 424 206 metrics, 1.5 billion data points monitored on 25 070
servers
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Evaluation

CPU load and memory consumption
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Figure: Running on 4 machines and 100 cores for 15 minutes.
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Evaluation

Time repartition
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Figure: Time repartition for predicting a metric.

15 / 22



Evaluation

Load handling

I End-to-end process for the prediction of 1 metric: 1 second.

I One monitoring server (with 24 cores) can handle the load of
1440 metrics (at worst), which is 85 servers on average.
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Conclusion

Related work

Positioning

No published work exhibits the same system (end-to-end system
for monitoring metrics prediction, storage and blacklisting).

Prediction models

I Hardware failures [CAS12]

I Capacity planning (e.g. Microsoft Azure [mic])

I Datacenter temperature (e.g. Thermocast [LLL+11])

I Monitoring metrics (e.g. Zabbix [zab] with manual tuning)
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Conclusion

Future work

I Experiment with more complex ML algorithms

I Predictions on long-term global trends

I Link with ticketing mechanism
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